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A. INTRODUCTION

Important research areas involving high-frequency scattering prediction techniques

that have been discussed in previous reports include the development of techniques

for modeling corner diffraction, nonprincipal-plane scattering, and scattering from

coated conducting geometries [1, 2, 3, 4, 5, 6, 7, 8, 9]. The most recent reports

have dealt mainly with the principal-plane radar cross section (RC$) prediction

of a perfectly conducting rectangular plate coated on one side with an electrically

thin (t << )_), lossy dielectric [3, 4, 5, 6, 7, 8, 9]. This is an important geome-

try to consider because its simplicity allows the isolation of individual scattering

mechanisms while its generality enables its incorporation into more complex mod-

eling geometries. In other words, the plate geometry allows one to develop and

validate modeling techniques for higher-order mechanisms, such as multiple diffrac-

tions and multiply diffracted surface waves, with the eventual goal of being able

to apply these techniques to general, coated conducting geometries.

This report presents and validates a Uniform Theory of Diffraction (UTD)

model for the principal-plane RCS prediction of a coated conducting rectangular

plate. The incorporation of higher-order multiple diffraction terms and of higher-

order surface-wave terms is discussed. The necessity of including hlgher-order

mechanisms is demonstrated. The model is validated by comparisons with exper-

imental results, and its superiority over a simple physical optics (PO) model is

demonstrated. Other models exist for the coated plate geometry [10, 11]; however,

the model presented in this report incorporates higher-order terms which were not

included in these earlier models. Specifically, the work by Knop and Cohn [10]

is based upon a physical optics (PO) approach, which does not include edge el-



fects. The model presented by Bhattacharyya and Tadon [11], although similar in

approach to the method used in this report, includes only first- and second-order

diffractions. The model presented here includes first-, second-, and third-order

regular diffractions and second- and third-order surface-wave diffractions. These

additional terms are crucial to obtaining accurate results.

The modeling of the scattered fields from coated conducting targets is a sub-

ject of interest both to those developing low-frequency modeling techniques and

to those developing high-frequency techniques. The development of low-frequency

techniques has been quite successful. Both the moment method (MM) and the

finite-difference time-domain (FDTD) techniques can be used to accurately pre-

dict the RCS of a coated plate [12]. Because these techniques are low-frequency

techniques, the size of the geometry that can easily be modeled is limited by

computational time and memory requirements. Thus, it is important to develop

high-frequency techniques, which are inherently more appropriate for electrically

large structures.

The model developed in this report is based upon the UTD diffraction co-

efficients for an impedance wedge [13, 14]. The effects of the finite thickness

lossy coating backed by a perfect conductor are included using the short-circuited

transmission-line approximation. Although a simple model, it will be demonstrated

that this model is accurate near and at normal incidence and sufficient for other

angles. The model presented in this report is computationally fast and simple

and increases in accuracy as the electrical size of the geometry increases and as

the electrical thickness of the coating becomes smaller. These are desirable and

expected properties of a high-frequency method.

Other work on high-frequency methods for modeling coated conducting ge-

ometries includes more sophisticated ways of dealing with problems of importance.

For example, Herman and Volakis [15] have dealt extensively with the model-

ing of scatterers in overlapping transition regions using the Extended Spectral

Ray Method (ESRM). Volakis and Senior [16] have investigated the scattering
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by a metal-backeddielectrichalf planeusinghigher-ordergeneralizedimpedance

boundaryconditions. RojasandChou [17]havealsoexploredsolutionsto partially

coatedconducting geometriesusing generalizedimpedanceboundary conditions.

Finally, Bernard [18] developeda solution for the specificcaseof a conducting

wedgecoveredby a dielectricmaterial. Becauseall of this work focuseson specific

problemsinherent in developinghigh-frequencytechniquesfor dealingwith coated

conductors,the resultsobtained arehighly accuratefor the problemsof interest.

The techniquesarenot inherently easyto apply to moregeneralgeometries.The

goalof the researchoutlined in this report is to developgeneralmodels,for coated

conductinggeometries,that areeasilyimplementedand computationally fast and

accurate.Thus, themodeloutlined in this report usesasimpleboundarycondition,

the impedanceboundary condition, which is incorporatedinto the short-circuited

transmission-lineapproximation, to model the effects of a finite-thickness coating

backed by a perfect conductor. Also, a straightforward application of the UTD,

based upon the coefficients for the impedance wedge, is applied. Future research

will attempt to incorporate ideas from the aforementioned research into the general

model.

B. THEORY AND RESULTS

1. UTD Plate Model

The UTD plate model consists of two parallel impedance wedges separated by a

distance, w, equal to the plate width. The wedge geometry is shown in Fig. 1.

To obtain the plate model illustrated in Fig. 2, the left and right wedge included

angles are set to 0", or the wedge parameter is set to n = 2. For the coated plate,

the bottom face of each wedge is modeled as a perfect conductor with r/2 = 0.

The top face of each wedge is modeled by an equivalent impedance appropriate for

the coating. The plate is modeled two-dimensionally in the principal plane, and
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Figure 2: Geometry for principal-plane scattering from a strip/plate with a finite-

thickness coating backed by a perfect conductor.



three-dimensional results are obtained using Ross's truncation approximation [19]:

2L 2

= --i- (i)

It is important that the impedance of the coating be modeled accurately, yet

simply, so that the model remains computationally fast and easy to implement.

For these reasons, the short-circuited transmission-line approximation is used to

express the normalized equivalent impedance of the top face of each wedge as [8]:

= j_/_ tan (2r _v/-fi_e_t) (2)770

where gc and ec are the relative permeability and permittivity, respectively, of the

coating; and t is the thickness of the coating in free-space wavelengths. Both #c

and ec can be complex numbers, so _?0is usually a complex quantity.

A first-order model which accounts for diffractions from each of the wedges

comprising the plate is not sufficient for accurate RCS prediction. As will be

demonstrated, interactions between the wedges are crucial scattering mechanisms.

The model of this work contains second- and third-order diffraction terms, in

addition to first-order mechanisms. Also, second- and third-order surface-wave

terms are included.

Higher-order diffraction terms are formulated by consecutively multiplying

the appropriate diffraction coefficients by the phase and amplitude spreading fac-

tors. The diffraction coefficients used are the UTD coefficients derived by Tiberio,

et aI. [13], and further revised by Griesser and Balanis [14]. These were based upon

Maliuzhinets' solution for the scattering by an impedance wedge [20]. The partic-

ular coefficients and methods of calculation were explicitly detailed in a previous

report [8] and, therefore, will not be repeated here. For reference, the notation for

the specific coefficients, their particular use, and the number of the equation in [8]

that gives the expression for the coefficient are given in the following table:



Table of Coefficients

Usage Notation Equation Refer-

ence in [8]

lst-order Diffractions

(Plane-wave Incidence,

Far-field Observation)

Higher-order Diffrac-

tions (Plane-wave Inci-

dence, Observation at a

Finite Distance)

Higher-order Diffrac-

tions (Cylindrical-wave

Incidence, Far-field

Observation)

Df](¢', ¢, O0, 02 = 0, n = 2)

Dp,,,M¢, ¢', ¢, t_0, 02 = 0, n = 2)

D_.ry(p,¢',¢,Oo,#2 = 0, n = 2)

Eq.

(4) with Fresnel

Functions set to

unity (F[x] = 1)

Eq. (4)

Eq. (4) with

p substituted for

p' and ¢' and ¢

switched

Surface Wave Field U,,_(p, ¢', ¢, 8o, n = 2) Eq. !19)

Surface Wave Transi- Uo,_tr(p,¢',¢,So, n=2) Eq. (21)
tion Field

The angles of incidence and observation with respect to the wedge of interest are

¢' and ¢, respectively. In [8], these were designated as ¢' and ¢. The distance

from the source to the point of diffraction is p' while p is the diffraction distance.

The Brewster angles, 00 and 0,, of the top and bottom faces of the wedge are,

respectively, given by Eqs. (2) and (3) of [8]. The wedge parameter is n, and it is

equal to 2 for a half plane.

The second-order diffracted fields actually consist of four mechanisms; two

emanating from each edge of the plate. Fig. 3 illustrates the mechanisms for the

right side of the plate. The field incident on the left side of the plate diffracts along

both the top and bottom of the plate. Each of these diffracted fields then diffracts

from the right side of the plate. Analogous mechanisms exist for the left side

of the plate for a total of four second-order mechanisms. The total second-order

diffracted field is:

e-jkp e-dkw V/_



Figure 3: Second-order scattering terms emanating from the right edge of the plate.

× [D,,,_jd(W,f'_,O°,Oo,O_=0,n= 2)

× D_.t.t(w, 0 °, ¢1, 0o, 02 = 0, n = 2)

+ D,_,1d(w,C'_,360°,Oo,O2=O,n= Z)

x D_11(w, 360°,¢l,0o, 02 =0,n= 2)]

+ e-J_(c°' _'-c°" _)

× [D._,_d(_,¢',,O°,Oo,02=0,.= 2)

× D_.t.t(w, 0°, ¢2, 0o, 02 = 0, n = 2)

+ Dv_,1d(w , _l,_,3600,0o, 02 = 0, n = 2)

x D_ll(w, 360°,¢2,0o, O2=O,n = 2)]} (3)

The third-order diffracted field consists of eight scattering mechanisms. The

four emanating from the right side of the plate are demonstrated in Fig. 4. Four

analogous mechanisms exist for the left side of the plate. The total third-order

diffracted field is:

E3rd
= Ei _ 4w

I O

× [Dp_dd(W,¢,,0,0o,02=O,n= 2)

x D_H(w,O°,¢l, Oo,02 = 0, n = 2)
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Figure 4: Third-order scattering terms emanating from the right edge of the plate.

× D_sS(-_, 0°, 0°, 0o,02,n -- 2)

' ° 2)+ Dp,.Se(w, ¢1,360 , 0o, 02 = 0, n =

× D_,H(w, 360°,¢l,0o, 02 = 0, n = 2)

× D_H( 2, 360 °, 360 °, 00, 02, n = 2)

I o
+ Dv,,,/d(w, ¢1, 0 , 0o, 02 = O, n = 2)

× D_ll(w, 360 °, ¢1, 0o, 02 = O, n = 2)

x D_H(2,0°,360°,Oo, O2, n = 2)

+ Dp,_t,t(w,¢_,360°,Oo,02 =O,n= 2)

x D_ll(w, 0°, ¢1, 0o, 02 = O, n = 2)

w o ]x D_ff(_-,360,0*,Oo,02, n = 2)

+ eJ_(¢'_¢'+¢°'¢)

' * 2)x [Dp,,,.td(w, ¢2, 0 , 0o, 02 = O, n =

x D_ll(w, O*, ¢2, Oo,02 = O,n = 2)

W

× D_tt(._,O*,O*,Oo, O2, n = 2)
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+ Dp,,,fa(w, '//2,360°, 00, 02 = 0, n = 2)

× D_o11(w, 360 °, ¢2, 00, 02 = 0, n = 2)

× D_H( w, 360 °, 360 °, 0o, 02, n = 2)
2

' ° 0 2)+ Dp,,,la(w , _c)2, 0 , 00, 2 = O, n =

× D_ll(w, 360 °, ¢2, 00, 02 = 0, n = 2)

W o 0 o
× D_Ij(_,0 ,36,0o, 02,n = 2)

' * 2)+ Dpwfd(w, ¢2,360 , 00, 02 = 0, n =

o 0 2)× D_y1(w,O ,¢2,00, 2 = 0, n =

x D_,.ff(2,360°,O°,Oo, O2, n = 2)]} (4)

In the above equation, _ is used at some points as the distance parameter

because the diffraction coefficient at these points is for cylindrical-wave incidence

from a distance of w and observation at a finite distance of w. For this case, a

distance parameter of -de- - _ must be used. Another point of greater importance
p'+p _ 2

is that the UTD diffraction coefficients for the impedance wedge developed in [13]

are identically zero for grazing incidence, which is the angle of incidence necessary

for incorporating higher-order diffraction terms. Tiberio, et al., performed a more

precise expansion of Maluizhinets' solution to the impedance wedge problem and,

thus, developed an appropriate diffraction coefficient for the case of grazing inci-

dence (see [13] Eq. (16)). The incorporation of this coefficient into our model is a

future goal of this research. For the results generated in this report, the value of

1
the diffraction coefficient for grazing incidence is calculated i-_th of a degree from

grazing using the ordinary UTD coefficients of Eq. (4) in [8]. The results using

this approximation are quite good, as will be demonstrated in the results section

of this report. It is expected that incorporating the more precise coefficient of Eq.

(16) in [13] will achieve even better results.
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Surfacewavefieldsexistonly for certain angular regions and surface impedances

given by Eqs. (17) and (18) in [8]. Surface wave transition fields compensate for

discontinuities in the surface wave field at the surface wave shadow boundaries

in a manner analogous to the way in which diffracted fields compensate for dis-

continuities in the geometrical optics field at the incident and reflection shadow

boundaries. The surface wave transition fields also add to the total field every-

where, as do the diffracted fields.

The model of this report includes second- and third-order diffracted surface

wave and surface-wave transition fields. The expressions for the total fields are

cumbersome and similar in form to Eqs. (3) and (4) above, so they will not be

included here. The general expression for the total nth-order diffracted field, in-

cluding the surface wave and surface wave transition terms is:

n-1 [ V t'te-jkpiun,h = u, II + +
i=l

e-Jkp

x D(¢', ¢_, pn)_ (5)

2. Contributions of Higher-Order Scattering Mechanisms

Although a model that includes first-order diffractions is accurate near and at

normal incidence to the plate, it is an insufficient model for accurately predicting

the scattering at all angles. For angles away from normal incidence, higher-order

diffraction terms and surface wave terms are crucial. A breakdown of the contri-

butions of the various terms is shown in Figs. 5 - 8 for a 2A by 2A plate coated

on one side with a coating of thickness t = 0.04121A and with material param-

eters /_c = 1.539- jl.2241 and e, = 11.828 -j0.16639. The results are shown

for a frequency of 10 GHz. In all the figures, the solid black line represents the

total field calculated using the UTD model. This model includes first-, second-,

and third-order regular diffractions, and second- and third-order surface wave and

surface wave transition terms.
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Figure 5: Breakdown of the UTD components (w = L = 2.0)_, f = 10.0 GHz).
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Figure 6: Breakdown of the UTD components (w = L = 2.05, f = 10.0 GHz).
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Fig. 5 comparesthe total UTD field to the field calculatedusing only first-

order diffractions. Near and at normal incidenceto both sidesof the plate, the

two modelsagreefairly well indicating that first-order diffractions are the main

contributing mechanismsat theseangles. Away from the main lobe, however,it

is apparent that higher-orderterms aremajor contributors to the scatteredfield.

The two modelsdiffer drastically in the regionextendingfrom grazing incidence

to approximately60° awayfrom grazingon both sidesof the plate.

Fig. 6 illustrates that second-orderdiffractions are the major higher-order

contributing mechanisms.The dotted line in this figure is the UTD field calcu-

lated using only first- and second-order diffraction terms. The dashed line is the

magnitude of the second-order diffractions only. For the main lobe on both sides

of the plate, the second-order terms are not significant; however, away from this

lobe, they become crucial. The first minor lobes are predicted fairly well with the

addition of the second-order terms. In the grazing lobes, especially on the coated

side of the plate, there is still a need for higher-order terms to complete the model.

The third-order diffraction terms improve the results in the grazing lobes

somewhat, as illustrated in Fig. 7, where the dotted line represents a UTD model

containing first-, second-, and third-order regular diffractions. The dashed line

representing the magnitude of the third-order field indicates that these fields are

very minor compared to the other fields. Fig. 8 illustrates that surface wave and

surface wave transition fields are crucial to the overall RCS pattern in the grazing

lobes. The solid line is the total field containing the surface wave and surface wave

transition fields while the dotted line does not contain these terms. The difference

between the two predicted fields is obvious in the lobes near grazing. As the dashed

line representing the magnitude of the surface wave and surface wave transition

fields indicates, the surface wave fields represent a larger contribution to the total

field than the third-order fields.
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3. Results

To validate the coated plate UTD model, measured RCS data was obtained for two

different physical plates at several different frequencies using the ElectroMagnetic

Anechoic Chamber (EMAC) at Arizona State University (ASU). The two plates,

which will be referred to as Plate A and Plate B, are characterized by the following

parameters:

• Plate A

- size: 6.0 cm × 6.0 cm

- plate material: Aluminum (25.0 mils)

- coating material: SWAM (commercially available ferrite-loaded RAM)

- coating thickness: 48.642 mils

- relative permittivity of coating: ec = 11.826 - j0.16639

- relative permeability of coating: _c = 1.539- jl.2241

- frequency of measurement: 10.0 GHz

- plate size in wavelengths: 2.0_ × 2.0)_

- coating thickness in wavelengths: 0.04121)_

• Plate B

- size: 3.1625 in. × 3.1625 in.

- plate material: Brass (10.0- 15.0 mils)

- coating material: GDS (commercially available ferrite-loaded RAM)

- coating thickness: 33.177 mils

- relative permittivity of coating: ec = 13.927 - j0.208

- relative permeability of coating: /_¢ = 1.446 - jl.140

- frequencies of measurement: 9.4842 GHz, 11.1964 GHz, and 12.053 GHz

- plate sizes in wavelengths: 2.54)_ × 2.54_, 3.0)_ × 3.0A, and 3.23_ × 3.23A

- coating thicknesses in wavelengths: 0.0267_, 0.03147_, 0.03388_

Plate A is electrically smaller than Plate B, and Plate A has a lossier coating than

Plate B. For these reasons, the UTD model is less accurate for Plate A than it is

for Plate B. The data indicates that the UTD model improves in accuracy as the

electrical size of the plate increases and as the coating becomes electrically thinner
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Figure 9: Monostatic RCS of Plate A (w = L = 2.0,X, f = 10.0 GHz).

and less lossy. The data presented in the next few figures demonstrates that the

UTD model, which accounts for edge effects, is much more accurate than the PO

model, which does not include the effects of interacting edges.

Fig. 9 contains graphs of the PO and experimental data for Plate A. Although

there is excellent agreement in the main lobe, the PO model becomes increasingly

inaccurate away from the main lobe, especially on the coated side of the plate

(0 ° < 6 < 180°). Fig. 10 demonstrates that the UTD model is much more accurate.

On the perfectly conducting side of the plate, the UTD model agrees fairly well

in the main lobe and first two side lobes. On the coated side of the plate, there

is much inaccuracy; however, the results are still better than those obtained using

the PO model. The two biggest areas of concern are the discontinuities apparent

at the grazing angles near 6 = 180 ° and the discrepancy at normal incidence to

the coated side of the plate. These areas are being investigated.
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The results for Plate B demonstrate that the UTD model becomes much

more accurate as the electrical size of the plate increases. Fig. 11 contains PO and

experimental data for Plate B at 9.5 GHz. Agreement between the two sets of data

is excellent for the main lobe and first side lobe on both sides of the plate; however,

the agreement between the UTD data and the experimental results, shown in Fig.

12, shows much better agreement. On both sides of the plate, agreement is almost

exact in the main lobe and first two side lobes. Agreement even in the grazing

lobes is very good. At higher operational frequencies, the agreement between the

UTD model and experiment remains consistently good. Figs. 13 and 14 show the

results for Plate B at 11.2 GHz, and Figs. 15 and 16 show the results for 12.1 GHz.
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C. FUTURE WORK

We have demonstrated a fairly accurate, yet computationally simple and fast, UTD

model for coated plate scattering in the principal plane. Immediate future work

will address modifications and refinements of this model. Particularly, the more

accurate UTD diffraction coefficients formulated by Tiberio, et al. [13], will be

used for modeling higher-order diffractions. This should result in better accuracy.

Also, the use of the ESRM of Herman and Volakis [15] will be investigated to see

if more accurate results can be obtained using this method.

The ultimate goal of this research is to be able to apply the UTD for coated

wedges to general geometries. In order to realize this goal, the method must remain

general. Other areas of possible future research include the use of the ESRM and of

higher-order generalized impedance boundary conditions (GIBC's); however, the

drawback of these techniques is that they are specific to a geometry and must often

be reformulated for each target of interest. Also, although the area of GIBC's is

promising, current research indicates that using GIBC's often results in non-unique

solutions [21]. Despite these drawbacks, future research will look at the possibility

of including the ESRM and GIBC's in a UTD model. Other future goals include

extending the principal-plane plate model to nonprincipal planes by incorporating

equivalent currents techniques. Also, the UTD for coated wedges will be applied

to the dihedral corner reflector.
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